Все игры
Обсуждения
Сортировать: по обновлениям | по дате | по рейтингу Отображать записи: Полный текст | Заголовки

Без заголовка

Необычный журнал для блогеров-инвалидов набирает обороты в сети интернет. 

24-го марта 2019-го года начал свою работу проект «Селфи: Журнал особенных блогеров». Он направлен на развитие блогеров с инвалидностью. Сейчас в журнале публикуются сотни человек, и, как сообщили авторы идеи, это ещё не предел. 

«Блогеров с инвалидностью много. Но аудитория у них, как правило, очень маленькая. А все, "благодаря" стереотипам. Наш проект направлен на то, чтобы развеять сомнения многих людей по поводу таких блогеров. Ребята делают репортажи о путешествиях, рассказывают о хобби и просто делятся жизненным опытом.», – говорит один из организаторов проекта Александра Никитина. 

«Селфи: Журнал особенных блогеров» – это уникальная бесплатная площадка для рекламы контента, и не только видео, но и аудио и письменных работ. 

Связаться с авторами идеи можно по следующим адресам: 
Никитина Александра Александровна https://vk.com/slonya8 - slona198787@gmail.com 
Картавенко Илья Николаевич https://vk.com/kartavenko1983 - kartavenko83@gmail.com 

Официальное сообщество в социальной сети «Вконтакте» https://vk.com/selfie_osobenniy_bloger

Все медицинские конфернции в одном месте!

Всем привет, теперь у сайта MedKonf есть официальная группа, посвященная медицинским конференциям и новостям из мира медицины. Вступай и будь в курсе актуальных мероприятий, событий, исследований и многого другого https://my.mail.ru/communit...

Метки: Медицина, Врачи, Конференции, Наука

Oлег Озеров, 21-04-2015 13:42 (ссылка)

Современные возможности небулайзерной терапии

Эффективность терапии заболеваний легких зависит не только от правильного выбора лекарственного препарата, но и от способа его доставки в организм пациента. Ингаляционный путь введения медицинских аэрозолей является наиболее эффективным способом доставки лекарственных препаратов при заболеваниях легких: препарат направляется непосредственно к месту своего действия – в дыхательные пути больного. 
Залогом успешной ингаляционной терапии являются не только свойства препарата (его химическая структура), но и такие факторы, как выбор оптимальной системы его доставки и обучение пациента ингаляционной технике. 

Идеальное устройство доставки должно обеспечивать депозицию большой фракции препарата в легких, быть достаточно простым в использовании, надежным, доступным для применения в любом возрасте и при тяжелых стадиях заболевания. К основным типам систем доставки относятся: дозированные аэрозольные ингаляторы (ДАИ), дозированные порошковые ингаляторы (ДПИ), жидкостные ингаляторы (soft mist inhalers) и небулайзеры. Каждое из этих средств доставки имеет свои достоинства и недостатки (табл. 1). 

Небулайзеры используются в клинической практике более 100 лет. Термин «небулайзер» (от лат. nebula – туман, облачко) впервые был употреблен в 1874 г. для обозначения «инструмента, превращающего жидкое вещество в аэрозоль для медицинских целей». Небулайзеры позволяют провести ингаляцию лекарственного вещества во время спокойного дыхания пациента, таким образом решая проблемы координации «больной – ингалятор». Данные приборы могут быть использованы у наиболее тяжелых больных, не способных применять другие виды ингаляторов, а также у пациентов «крайних» возрастных групп – детей и пожилых. При помощи небулайзеров возможна доставка в дыхательные пути больного разнообразных препаратов, а при необходимости – их высоких доз.

Как из видно из таблицы 2 (рекомендации European Respiratory Society и International Society for Aerosols in Medicine, 2011), небулайзеры могут быть использованы у пациентов с плохой и хорошей координацией вдоха с активацией ингалятора, независимо от величины создаваемого инспираторного потока. 

Показания к применению небулайзеров

Абсолютных показаний к применению небулайзеров немного. Они должны использоваться, когда: 
1) лекарственное вещество не может быть доставлено в дыхательные пути при помощи других ингаляторов, т.к. существует достаточно много лекарственных препаратов, для которых не создано портативных ингаляторов (ДАИ и ДПИ): антибиотики, муколитики, препараты сурфактанта, простаноиды и др.;
2) необходима доставка препарата в альвеолы (например, препараты сурфактанта при остром респираторном дистресс-синдроме); 
3) тяжесть состояния пациента или его физическое состояние не позволяют правильно использовать портативные ингаляторы. Данное показание является наиболее важным и значимым при выборе ингаляционной техники. Несмотря на известные достоинства дозированных ингаляторов (ДИ) – малые размеры, более низкая стоимость, быстрота использования, их применение требует четкой координации между вдохом больного и высвобождением лекарственного препарата, а также форсированного маневра. Пожилой возраст больного часто может быть препятствием для правильного использования всех видов ингаляционной техники, кроме небулайзера. Небулайзер является также единственно возможным средством доставки аэрозольных препаратов у детей до 3 лет.

К объективным критериям, требующим назначения ингаляций при помощи небулайзеров, относят: снижение инспираторной жизненной емкости менее 10,5 мл/кг веса (например, < 730 мл у больного массой 70 кг); инспираторный поток больного менее 30 л/мин; неспособность задержки дыхания более 4 с, кроме того, использование небулайзеров показано больным с двигательными расстройствами, нарушением уровня сознания. 

Все остальные показания являются относительными (т.е. в данных ситуациях небулайзер можно заменить другими ингаляционными системами):
1) необходимость использования большой дозы препарата. Дозы лекарственных препаратов могут зависеть от функциональной тяжести заболевания. Максимальный ответ на ингаляционные лекарственные препараты при тяжелой бронхиальной обструкции может быть достигнут только при использовании высоких доз препаратов]. Причинами такого физиологического ответа при тяжелой степени бронхиальной обструкции могут быть наличие анатомических препятствий (секрет, спазм, отек слизистой и другие нарушения) для доступа препарата к рецепторам и, возможно, потребность в большей пропорции доступных рецепторов для достижения максимального ответа; 
2) предпочтение пациента, что выражается в том, что многие больные во время обострения заболевания предпочитают использовать терапию и технику, отличную от той, которую они используют в привычной, домашней среде; 
3) практическое удобство. Несмотря на то, что эффективность ингаляционной техники при использовании ДИ со спейсером и небулайзера приблизительно одинакова во многих ситуациях, применение небулайзеров является более простым методом терапии, не требует обу­чения пациента дыхательному маневру и контроля врача за техникой ингаляции. В случае использования небулайзера врач может быть уверен в том, что больной получает точную дозу лекарственного препарата. 

Также следует напомнить о других достоинствах небулайзера по сравнению с прочими средствами доставки – в случае необходимости во время ингаляции возможно использование кислорода. 
Доставка препарата в дыхательные пути зависит от множества факторов, важнейшим из которых является размер частиц лекарственного аэрозоля. Условно распределение частиц аэрозоля в дыхательных путях в зависимости от их размера можно представить следующим образом (рис. 1):
•  более 10 мкм − осаждение в ротоглотке;
•  5–10 мкм − осаждение в ротоглотке, гортани и трахее;
•  2–5 мкм − осаждение в нижних дыхательных путях;
•  0,5–2 мкм − осаждение в альвеолах;
•  менее 0,5 мкм − не осаждаются в легких.

Эффективность продукции аэрозоля, его свойства и доставка в дыхательные пути зависят от типа небулайзера, его конструкционных особенностей, сочетания системы компрессор – небулайзер и др. Однако традиционные небулайзеры не лишены и недостатков, таких как длительное время ингаляции, относительно невысокая легочная депозиция препаратов, возможность контаминации оборудования при неправильном обслуживании и др. (табл. 1). 

Принцип работы небулайзеров

В течение многих лет в зависимости от вида энергии, превращающей жидкость в аэрозоль, выделяли 2 основных типа небулайзеров: 1) струйные – использующие струю газа (воздух или кислород); 2) ультразвуковые (УЗ) – использующие энергию колебаний пьезокристалла. Относительно недавно (около 3 лет назад) появился новый, третий тип небулайзеров – мембранные, которые благодаря новому принципу работы позволяют преодолеть множество недостатков, связанных с применением традиционных небулайзеров.

Струйные небулайзеры

Принцип работы струйного небулайзера основан на эффекте Бернулли. Воздух или кислород (рабочий газ) входит в камеру небулайзера через узкое отверстие (которое носит название Вентури). На выходе из этого отверстия давление падает, скорость газа значительно возрастает, что приводит к засасыванию в эту область пониженного давления жидкости через узкие каналы из резервуара камеры. 

При встрече жидкости с воздушным потоком, под действием газовой струи она разбивается на мелкие частицы, размеры которых варьируют от 15 до 500 μм – это так называемый «первичный» аэрозоль. В дальнейшем эти частицы сталкиваются с «заслонкой», в результате чего образуется «вторичный» аэрозоль – ультрамелкие частицы размером от 0,5 до 10 μм (около 0,5% от «первичного» аэрозоля), который далее ингалируется, а большая доля частиц «первичного» аэрозоля (около 99,5%) осаждается на внутренних стенках камеры небулайзера и вновь вовлекается в процесс образования аэрозоля (рис. 2). 

Ультразвуковые небулайзеры

УЗ-небулайзеры для продукции аэрозоля используют энергию высокочастотных колебаний пьезокристалла. Сигнал высокой частоты (1–4 MHz) деформирует кристалл, и вибрация от него передается на поверхность раствора препарата, где происходит формирование «стоячих» волн. При достаточной частоте 

УЗ-сигнала на перекрестье этих волн происходит образование «микрофонтана» (гейзера), т.е. образование и высвобождение аэрозоля. Размер частиц обратно пропорционален акустической частоте сигнала 2/3 степени. Частицы большего диаметра высвобождаются на вершине гейзера, а меньшего – у его основания. Как и в струйном небулайзере, частицы аэрозоля сталкиваются с «заслонкой», более крупные возвращаются обратно в раствор, а более мелкие – ингалируются (рис. 3). 

Продукция аэрозоля в УЗ-небулайзере практически бесшумная и более быстрая по сравнению со струйными. Однако их недостатками являются неэффективность производства аэрозоля из суспензий и вязких растворов; как правило, больший остаточный объем; повышение температуры лекарственного раствора во время небулизации и возможность разрушения структуры лекарственного препарата. 

Мембранные небулайзеры

Новое поколение небулайзеров имеет принципиально новое устройство работы: они используют вибрирующую мембрану или пластину с множественными микроскопическими отверстиями (сито), через которую пропускается жидкая лекарственная субстанция, что приводит к генерации аэрозоля. 

Новое поколение небулайзеров имеет несколько названий: мембранные, электронные, небулайзеры с вибрирующим ситом (Vibrating Mesh Nebulizers – VMN) или mesh-небулайзеры.

В этих устройствах частицы «первичного» аэрозоля соответствуют размерам респирабельных частиц (чуть больше диаметра отверстий), поэтому не требуется использование заслонки. Данный тип технологии предполагает использование небольших объемов наполнения и достижение более высоких значений легочной депозиции по сравнению с обычными струйными или УЗ-небулайзерами. Различают 2 типа мембранных небулайзеров: использующие «пассивную» вибрацию мембраны и «активную». 

В небулайзерах, использующих «активную» вибрацию мембраны, сама мембрана подвергается вибрации от пьезоэлектрического кристалла. Поры в мембране имеют коническую форму, при этом самая широкая часть пор находится в контакте с лекарственным препаратом. В небулайзерах данного типа деформация мембраны в сторону жидкого лекарственного вещества приводит к «насасыванию» жидкости в поры мембраны (рис. 4). Деформация мембраны в другую сторону приводит к выбрасыванию частиц аэрозоля в сторону дыхательных путей больного. Принцип «активной» вибрации мембраны используется в небулайзерах AeroNeb Pro и AeroNeb Go (Aerogen) и eFlow (Pari). 

В устройствах, в основе которых лежит «пассивная» вибрация мембраны, вибрации трансдьюсера (рожка) воздействуют на жидкое лекарственное вещество и проталкивают его через сито, которое колеблется с частотой рожка (рис. 5). В отличие от традиционных струйных или УЗ-небулайзеров аэрозоль, который образуется при прохождении жидкого лекарственного вещества через мембрану-сито, не подвергается обратной рециркуляции и может быть сразу доставлен в дыхательные пути больного. Принцип «пассивной» вибрации мембраны используется в 
небулайзере OMRON Micro AIR U22 (OMRON Healthcare, Япония) – самый маленький небулайзер в мире. 

В отличие от традиционных УЗ-небулайзеров в мембранных небулайзерах энергия колебаний пьезокристалла направлена не на раствор или суспензию, а на вибрирующий элемент, поэтому не происходит согревания и разрушения структуры лекарственного вещества. Благодаря этому мембранные небулайзеры могут быть использованы при ингаляции протеинов, пептидов, инсулина и антибиотиков. 

В исследовании in vitro Y. Yoshiyama et al. показали, что мембранный небулайзер OMRON U22 способен эффективно производить аэрозоль из суспензии будесонида, при этом выход аэрозоля составляет 70% от дозы препарата. 

К потенциальным недостаткам мембранных небулайзеров относится возможность засорения миниатюрных отверстий частицами аэрозоля, особенно при использовании суспензий [16]. Риск засорения отверстий зависит от частоты и условий обработки ингаляторов. Благодаря более высокой эффективности мембранных небулайзеров при их использовании требуется уменьшение стандартных доз и объема наполнения лекарственных препаратов. 

Подробные инструкции по использованию струйных и мембранных небулайзеров представлены в таблице 3. 

Новые технические решения небулайзерной терапии

Среди новых технических решений в области небулайзерных технологий можно отметить и дальнейшее развитие традиционных струйных небулайзеров. Созданы компрессоры, которые благодаря своим небольшим размерам приближают небулайзеры к портативным устройствам доставки (и при этом не уступают более массивным «коллегам» по техническим характеристикам) (рис. 6). 

Появились новые решения в классе адаптивных устройств доставки − дозиметрических небулайзеров, принципиальным отличием которых является адаптация продукции и высвобождения аэрозоля с дыхательным паттерном больного. Устройство автоматически анализирует инспираторное время и инспираторный поток больного, и затем на основе этого анализа аппарат обеспечивает продукцию и высвобождение аэрозоля в течение первых 50% последующего вдоха (рис. 7). Ингаляция продолжается до тех пор, пока не достигается выход точно установленной дозы лекарственного вещества, после чего аппарат подает звуковой сигнал и прекращает ингаляцию. Примером небулайзеров данного типа являются I-nebTM (Philips Respironics, US) и AKITA Inhalation System (Aktivaero GmbH, Germany).

И, наконец, продолжается усовершенствование классических моделей струйных небулайзеров. Нужно помнить, что системы струйных небулайзеров (т.е. небулайзер-компрессор) разных производителей не являются абсолютно идентичными по своей эффективности, и это нужно обязательно учитывать при выборе системы доставки для госпитальной или домашней ингаляционной терапии. На практике сравнение эффективности различных систем небулайзеров представляет собой очень непростую клиническую задачу. Для этого требуется клиническое исследование по оценке эффективности бронхорасширяющих препаратов у пациентов с обструктивными заболеваниями легких. Проведение такого типа исследований намного более трудоемко и ответственно по сравнению со стендовыми и лабораторными исследованиями, по этой причине таких работ сегодня выполняется очень мало. Поэтому заслуживают внимания результаты недавно представленного исследования, посвященного сравнению эффективности двух различных систем струйных небулайзеров.  

T. Sukumaran et al. провели рандомизированное контролируемое исследование, включавшее 60 пациентов с бронхиальной астмой (дети в возрасте от 7 до 13 лет с пиковой (максимальной) скоростью выдоха (ПСВ) менее 70% от должных величин). Пациенты случайным методом были разделены на 2 группы: первая группа больных (n=30) получала терапию раствором сальбутамола (0,15 мг/кг массы тела, растворенного в 2 мл физиологического раствора) при помощи небулайзера NE-C900 (OMRON Healthcare), а вторая группа − такую же терапию с помощью небулайзера Redimist (RE). 

Для получения приемлемых показаний ПСВ было выполнено не менее трех маневров с целью оценки данного показателя до ингаляции с сальбутамолом и спустя 15 и 30 мин. после ингаляции.
Исходные показатели ПСВ в обеих группах были одинаковыми. Различия исходного показателя ПСВ и показателя через 15 мин. после ингаляции, а также исходного показателя ПСВ и показателя через 30 мин. после ингаляции были достоверными в обеих группах. 

Улучшение показателя ПСВ в группе использования небулайзера OMRON NE-C900 было более существенным, чем в группе RE через 15 мин. после ингаляции (р=0,005). Различия по ПСВ между показаниями через 15 и 30 мин. после ингаляции в обеих группах не были статистически значимыми. При сравнении неоднократно измеренных показателей ПСВ метод ANOVA показал постоянство данных и отсутствие существенных различий в изменениях в обеих группах на начальном этапе, спустя 15 и 30 мин. после ингаляции.

Таким образом, данное исследование продемонстрировало, что бронхорасширяющий эффект (выражающийся в улучшении показателей ПСВ) через 15 мин. после ингаляции сальбутамола был более выражен при применении небулайзера OMRON NE-C900, чем при использовании небулайзера Redimist. Данное исследование не только ясно продемонстрировало разницу в эффективности различных систем струйных небулайзеров, что важно с точки зрения выбора оптимальной техники, но и может иметь определенное значение для отечественной медицинской практики, т.к. небулайзер NE-C900 (OMRON Healthcare) (рис. 8) сегодня доступен и на нашем рынке. 

Небулайзер NE-C900 позиционируется как прибор для использования в т.ч. и в стационарных условиях. С учетом доказанной высокой эффективности в клиническом исследовании и технических особенностей устройства (мощный компрессор с возможностью генерации воздушного потока до 7 л/мин и простая небулайзерная камера, состоящая всего из двух частей) небулайзер OMRON NE-C900 может иметь преимущества при выборе надежных и эффективных устройств доставки.

Принципы обработки и дезинфекции небулайзеров

Процедуры по обработке и дезинфекции небулайзеров, предлагаемые производителями, могут значительно варьировать в зависимости от марки используемого прибора. Между тем представляется очень важным использовать унифицированные правила по обработке небулайзеров.

Согласно рекомендациям Centre for Diseases Control and Prevention (CDC), процедура обработки медицинских инструментов, в т.ч. и небулайзеров, должна включать 4 последовательных этапа: мытье, полоскание, дезинфекцию и сушку. Во время этих процедур персоналу или лицам, проводящим обработку, необходимо соблюдать строгую гигиену рук. Основные рекомендации по обработке небулайзеров, приведенные в разных документах, представлены в таблице 4. 

Таблица 1. Преимущества и недостатки средств доставки ингаляционной терапии
Таблица 2. Корректный подбор ингаляционного устройства для пациентов с хорошей и плохой координацией вдоха с активацией ингалятора [6]
Рис. 1. Модель Международной комиссии по радиационной защите, демонстрирующая взаимосвязь между аэродинамическим диаметром и распределением частиц в легких [Köbrich et al., 1994]
Рис. 2. Устройство струйного небулайзера
Рис. 3. Устройство ультразвукового небулайзера
Рис. 4. Устройство мембранного небулайзера с «активной» вибрацией мембраны
Рис. 5. Устройство мембранного небулайзера с «пассивной» вибрацией мембраны
Рис. 6. Портативный струйный небулайзер MicroElite (Phillips Respironics)
Таблица 3. Подробные инструкции по использованию небулайзеров [6]
Рис. 7. Доставка препаратов при использовании струйных небулайзеров различных типов
Рис. 8. Небулайзер Comp Air Pro NE-C900 (OMRON Healthcare)
Таблица 4. Основные рекомендации по обработке небулайзеров

В этой группе, возможно, есть записи, доступные только её участникам.
Чтобы их читать, Вам нужно вступить в группу